Operator Schmidt ranks of bipartite unitary matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks and determinants of the sum of matrices from unitary orbits

Abstract The unitary orbit U(A) of an n×n complex matrix A is the set consisting of matrices unitarily similar to A. Given two n × n complex matrices A and B, ranks and determinants of matrices of the form X +Y with (X,Y ) ∈ U(A)×U(B) are studied. In particular, a lower bound and the best upper bound of the set R(A,B) = { rank (X + Y ) : X ∈ U(A), Y ∈ U(B)} are determined. It is shown that ∆(A,...

متن کامل

Unitary Matrices and Hermitian Matrices

Unitary Matrices and Hermitian Matrices Recall that the conjugate of a complex number a + bi is a − bi. The conjugate of a + bi is denoted a+ bi or (a+ bi)∗. In this section, I’ll use ( ) for complex conjugation of numbers of matrices. I want to use ( )∗ to denote an operation on matrices, the conjugate transpose. Thus, 3 + 4i = 3− 4i, 5− 6i = 5 + 6i, 7i = −7i, 10 = 10. Complex conjugation sati...

متن کامل

Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries

The operator-Schmidt decomposition is useful in quantum information theory for quantifying the nonlocality of bipartite unitary operations. We construct a family of unitary operators on C ⊗ C whose operatorSchmidt decompositions are computed using the discrete Fourier transform. As a corollary, we produce unitaries on C ⊗ C with operatorSchmidt number S for every S ∈ {1, ..., 9}. This corollary...

متن کامل

Graphs of unitary matrices

The support of a matrix M is the (0, 1)-matrix with ij-th entry equal to 1 if the ij-th entry of M is non-zero, and equal to 0, otherwise. The digraph whose adjacency matrix is the support of M is said to be the digraph of M . This paper observes some structural properties of digraphs and Cayley digraphs, of unitary matrices. We prove that a group generated by two elements has a set of generato...

متن کامل

Haar-Distributed Unitary Matrices

We provide an elementary proof for a theorem due to Petz and Réffy which states that for a random n × n unitary matrix with distribution given by the Haar measure on the unitary group U(n), the upper left (or any other) k × k submatrix converges in distribution, after multiplying by a normalization factor √ n and as n → ∞, to a matrix of independent complex Gaussian random variables with mean 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2018

ISSN: 0024-3795

DOI: 10.1016/j.laa.2018.07.018